Reg. No.:

Question Paper Code: 70568

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Seventh Semester

Electrical and Electronics Engineering

EE 8702 - POWER SYSTEM OPERATION AND CONTROL

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Name the regional load despatch centres in India.
- 2. Mention the conditions for connecting two generators in parallel.
- 3. List the objectives of LFC.
- 4. What is a tie line?
- 5. How does the STATCOM regulate voltage in a power system?
- 6. Which type of appliances require AVR?
- 7. Give some examples of constraints in the unit commitment problem.
- 8. What is the difference between the base point and participation factor?
- 9. Mention some of the power system parameters which can be considered as states in the power system state estimation problem?
- 10. Why the measurements are weighted in state estimation problems?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Discuss the functions of various terms of load forecasting.

Or

(b) Elaborately discuss the requirements of a good power system.

12. (a) Systematically develop the model of a single-area power system.

Or

- (b) Explain with a neat schematic diagram the integration of economic dispatch control with load frequency control.
- 13. (a) What is an AVR? Draw and explain the block diagram representation of the AVR loop.

Or

- (b) Draw and explain the significant features of VI characteristics of SVC and STATCOM.
- 14. (a) Draw and explain the input-output curve and incremental cost curve of a thermal power plant.

Or

- (b) Explain the solution to the Unit commitment problem using a priority list method with a simple flowchart. Also, discuss its merits and demerits.
- 15. (a) With a neat schematic diagram explain the functions of SCADA and EMS in power systems.

Or

(b) Explain the power system state estimation with a neat schematic diagram.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Perform the dynamic analysis of the LFC of a two-area system with a neat block diagram representation.

Or

(b) Consider two units of a plant that have fuel costs of

$$f_1 = \frac{0.8}{2}P_1^2 + 10P_1 + 25$$
 Rs/h and $f_2 = \frac{0.7}{2}P_2^2 + 6P_2 + 20$ Rs/h

If these two units together supply a total of 220 MW, compute the economic operating settings.